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Carbon-13 NMR spectra are reported for 59 meta- and para-substituted anilines in deutero-
chloroform or in its mixture with hexadeuterodimethyl sulphoxide. The substituent-induced
chemical shifts (SCS) of ring carbon atoms in position 4 correlate well with dual substituent
parameters (DSP). In the remaining positions correlations are not satisfactory with any kind
of known substituent constants. There is, however, a close resemblance between SCS in the same
position of meta- and para-substituted anilines and even in other series of aromatic compounds.

One approach to understand the substituent-induced chemical shifts (SCS) is to cor-
relate these values with parameters whose physical meaning is in principle known!:2,
Most popular are correlations with various kinds of ¢ constants®, particularly the
relation to dual substituents parameters* (DSP), o, and oy (Eq. (1)). The applicability
of this equation is limited to positions which are not influenced by steric and short-
-range effects; for this reason most attention has been given to meta- and para-
-substituted benzene derivatives (see refs''>*>~'? and further literature reviewed in
refs>*®). In our previous papers we have challenged the DSP approach because it
was not the most appropriate in the case of !3C shifts of side-chain carbon atoms,
viz. overparametrized on the one hand and insufficiently precise on the other®-.
Better results were obtained with principal component analysis (PCA) according
to Eq. (2). The difference between the two equations is that the parameters of Eq.
(2) (components B and C) are not known a priori but obtained simultaneously with
o, B, y by an optimization procedure.

8 = 6% + 0101 + 0rox (1

To reach the conclusions above it was necessary to investigate sufficiently large
series of compounds with systematically chosen substituents (substituted benzo-

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Substituted Anilines 369

nitriles® and methyl benzoates®). If the study is extended from side-chain atoms to
include ring carbon atoms, the published experimental material®~%-'2~17 has to
be completed. In this communication we report 1*C NMR chemical shifts of meta-
and para-substituted anilines, I and II, and we also prove the limitations of the
DSP approach and its extensions. PCA will be carried out later on a broader set
of data. Measurements on smaller series of substituted anilines have been reported

in the literature’-8-17.
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SCS of ring carbon atoms are known for several extensive series of benzene deriva-
tives®~°. Correlation with DSP was found satisfactory’-81°~15 though mainly
in the position* 4 (once with modified parameters'®), rarely also in the position 3
(refs?-812:15) Tn most cases it was felt necessary to improve the precision with the
aid of a more complex equation. One possible refinement, called DSP-NLR (non-
-linear resonance) Eq. (3), was applied”:®"'% to position 4, or even®:'* to position 3.
Another possibility is to extend the correlation by an additional term®*'4, the specially
devised® parameters were denoted I, O, M for the positions 1, 2, 3, respectively —
the so-called extended DSP treatment (EDSP), Eq. (4). Finally a linear combination
of two SCS can be correlated with a single constant'é, Eq. (5).

3 =08° + 0,01 + orog/(1 — eoy) 3
8 =06%4 00, + 0gog + 0xX (X =1,0,M) 4
3(53 - 50) + b(54 - 50) = a'l,R (5)

Statistical evidence of the above correlations was generally not conclusive, in some
cases the number of experimental data was too limited!2. Therefore, some authors
preferred correlations with calculated charge densities'® or simple correlations of
individual series with each other!®11:13:19 In two previous papers of our group?®-2*

hd To avoid any misunderstanding we use the prefixes meta and para to denote the mutual
position of the two substituents in a series of compounds; the position of a given carbon atom
in the molecule is denoted by numerals 1— 6, beginning with 1 for the atom to which the substi-
tuent is bonded (formulae I and II).
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we introduced PCA to this purpose on two SCS sets collected from literature data.
In monosubstituted benzenes we treated SCS in all positions together and reduced
their number to three components but substituents were clustered into groups°.
SCS of disubstituted benzenes can to a large extent be modeled from mono deriva-
tives?!. In conclusion there is little agreement in the literature on this topic and
most of the correlations are not well proven statistically. Another complication is
that the literature usually does not report on all statistics considered important?é,
Our experimental data give the opportunity to test some of the above relationships
in a statistically more significant way.

EXPERIMENTAL

Materials. Substituted anilines were either commercially available or were prepared by well
known procedures. 3-Acetoxyaniline, m.p. 57°C, was prepared by catalytic hydrogenation“r2 of
the nitro derivative on palladium-charcoal. In our opinion it can not be prepared as reported?3 ,
i.e. “from 3-amino-phenol by a standard method”. However, the reported 13C NMR spectrum
from the same laboratory8 agrees with ours. Additional six substituted anilines with the substi-
tuents CH,CgHs, CH,OC¢H,, and CH,SO,CzH; were also prepared by catalytic hydrogena-
tion. Only the 3-aminobenzyl phenyl ether has not been sufficiently characterized previously,
but its hydrochloride had characteristics (m.p. 143°C) as reported earlier?4.

NMR measurements. 13C NMR spectra were recorded partly in Prague under the conditions
as previously reporteds, partly in Umed on a Bruker AC-P-250 NMR spectrometer, using the
same conditions. Both series of measurements were checked on several compounds which were
measured twice. The 13C chemical shifts, relative to internal TMS, are given in Tables I and II.
Their reproducibility is estimated to +0-02 p.p.m. SCS given in Table III relate always to the
unsubstituted aniline in the same solvent: mostly CDCl;, in some cases CDCl3, with 107 CD;.
.SOCDj;. Their actual precision was estimated from a comparison with previously published
data”'® as given in Table IV last line. The agreement of measurements in two laboratories was
in this case definitely worse than previously®. In addition the distribution of errors shows
a strange pattern: all relative shifts in the position ortho and para to the amino group were in
our data more positive (in average by 0-09 p.p.m.) than the literature values’*®. We can hardly
suggest any reasonable explanation for this deviation except possibly a difference in solvent
purity. Nevertheless, the precision is by far not so critical as it was previously in the case of extra-
annular carbon atoms®'® since SCS in the present case are much larger in magnitude (except
for carbon 3).

Incorrect shift assignment may cause some problems. The assignment is unambiguous for
symmetrical molecules and for fluoro derivatives where it is aided by the observed coupling
constant J(C, F). In the remaining molecules the assignment is based essentially on the number
of directly bonded protons and on standard substituent shifts?. The last procedure is in fact
contradictory: first the assignment is made according to common substituent shifts, where addi-
ivity is assumed, then more exact sutisbtuent shifts are evaluated and their non-additive character
is claimed. Even so, this procedure may be reliable in two limiting cases: when the shifts of indivi-
dual carbon atoms in one molecule are very different, or when some of them are so close that
a misassignment is immaterial. Between these two extremes the assignmnent may be doubtful.
In important cases we tested the assignment by 13¢.1Y heterocorrelated 2D-NMR spectra
(using HETCOR pulse sequencczs) and/or by selective proton decoupling in 13c NMR spectra.

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Substituted Anilines 371

In a few instances even these methods were not sufficient and we left the assignment undecided.
The chosen alternative was arbitrarily set to those values which gave better correlation and/or
closer resemblance to similar compounds. All these cases are marked in Tables I and II. Note
that the statistics of the correlations are not affected by such uncertainty since the number of
compounds is large and possible differences are relatively small.

The statistical procedures were essentially the same as given previously®. Of many correlations
carried out only the more important ones are listed in Table IV. In particular when correlations
are listed with one kind of oy constants only (ag, o , og), it means that the fit of the other models
was distinctly worse. For the linear regression analyses we employed a statistical procedure as
recommended recently?%. The intercept was fitted freely, giving the same weight to the unsubsti-
tuted compounds as to the others but the intercept values were insignificant and are omitted in
Table IV. No specific procedure for excluding outliers was used, some individual deviations are
mentioned separately in the following discussion.

DISCUSSION

Of the twenty nine substituents investigated, two deserve special attention: aza
and OCOCH;. The aza “‘substituent” showed very distinct deviations® even in the
plots and correlations not involving any o constants: substituents of this kind
should be investigated separately. The acetoxy group behaves probably normally
but the available values of DSP cannot be considered reliable. To obtain comparable
results we excluded the two substituents from all calculations, although they are
shown in the plots not involving constants ¢. On the other hand we have not ob-
served any significant anomalies claimed for some magnetically anisotropic groups
like heavier halogens’?°, trifluoromethyl?°, vinyl?°, formyl’, phenyl?’, phenoxyl?®,
Substituents containing a phenyl ring in different positions seemed to be a parti-
cularly good probe for such effects. For this reason we have inserted into our set
the relatively complex substituents CH,C¢Hs, CH,O0C¢H;s, and CH,SO,C¢H;.
Since no deviations were encountered, these groups were treated with the other
substituents. No sign of dimerization was observed with meta derivatives which
have substituents COR or COOR, i.e. no aggregation behaviour similar to that
found for hydroxy derivatives®:?°. The NH, group is certainly less effective hydrogen
donor than OH. On the other hand individual deviations were observed for substi-
tuents OH, SCH;, and N(CH3)2 in certain correlations, which will be mentioned
where appropriate. In no case was elimination or insertion of one or two substituents
of importance for the final conclusion.

There is a fundamental difference in the quality of fit when correlations for the
position C-4 are compared with those involving the other positions. The former
will be discussed first. The correlations are very similar for the meta and para sub-
stituted derivatives and can be classified as very good based on the correlation
cocfficient but the standard deviations are still several times larger than the largest
possible experimental error (Table IV). Similar results were obtained for more
limited series of meta (ref.®) and para-substituted’ anilines, and also for para-
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380 Bud&sinsky, Johnels, Edlund, Exner:

-substituted phenols'* and triphenyls!®. The substituent effect is evidently not
sensitive to the presence of a fixed functional group neither to its actual position.
Although the fit was approximately the same, it was subjectively evaluated by different
authors as “excellent” !4, “good precision”®, or “not inadequate””’. Only in the case
of meta- and para-substituted styrenes an “outstanding” fit was claimed® (r=
= 0-9999) but the statistical procedure employed was in fact not simple regression,

but PCA, this means that the values of ¢ were also optimized.

NH, NH, NH,
o ®
@
R RO ‘
n v 1%

The present correlations point to the great importance of mesomeric compared
to inductive efects: the ratio of the regression coefficients gg/o; = 3-5—3-8 is similar
as for '°F shifts3? in the position 4. On the contrary, there is some support that the
conjugation does not include the NH, group: Firstly, the values of gg (and also of
0;) do not differ significantly when the constant amino group is in the meta or para
position. This is confirmed by a direct regression of para vs meta derivatives with
a slope insignificantly different from unity (Table IV). Secondly, the correlation with
gg constants, accounting for such conjugation, is not better than with normal
constants of. A more detailed comparison is accomplished by the DSP-NLR

sthod” which can detect even smaller differences in the electron demand. In our
case this approach does not yield any improvemznt: the values of parameter ¢ are
not significantly different from zero, the fit is not improved, and parameters g
and g are not changed. This statement is contrary to that obtained on a smaller
data set”. We conclude that SCS of the carbon C-4 are controlled by the classical
inductive and mesomeric effects which corresond to the conjugation of the substi-
tuent with the bznzene ring but not with the amino group, as shown for the para
derivatives in formulas I'1I and IV for donors and acceptors, respectively. For a suc-
cessful correlation the conjugation of donors is deciding since the values of oy for
acceptors are small*, more exactly they are equal to zero for the majority of acceptors
and within their errors®3!. Recent theoretical treatments3?:33 consider formula V
to be most important for para-substituted derivatives bearing one donor and one
acceptor substituent. As already mentioned the standard deviation still suggests some
other effects, possibly of nonelectrostatic nature, controlling the C-4 SCS. These
could be revealed in a plot of meta and para shifts against each other. However,
Fig. 1 does not show any systematic deviations, but rather several deviating points,
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mainly for the donor substituents N(CHj),, SCH3, OH, SO,NH,, which are not due
either to misassignment or to experimental error. These deviating points remain
without explanation: when they are deleted, the standard deviation drops to 0-29 which
value may be considered as a limit of attainable accuracy. Plots of either para or
meta SCS against SCS in benzene derivatives'®3* (always on C-4) yield the same
picture.

SCS in the remaining positions, 1, 2, or 3 cannot be correlated with DSP even on
an approximate level (Table IV). This fact is most strange for position 3 which has
been always considered as sufficiently distant to eliminate proximity effects and
has been commonly correlated in one equation together with the position 4 when
using the framework of the Hammett equation. In some smaller series, the reported
correlations were also unsatisfactory, and as a consequence the discussions’*® of
constants ¢ are quite meaningless; the reported”'® constants ¢ agree only in sign
with those of Table IV. In addition some of the latter are not significant statistically.
A closer inspection also reveals a significant difference between the meta and para
series. In the former, both C-3 and C-5 exhibit only positive shifts, irrespective of
the donor or acceptor character of the substituent. SCS in the position 3 and 5 are
similar, showing a certain trend (Table IV and Fig. 2). The only exception is the
large negative SCS of the aza substituent (not shown in the figure). On the other
hand, C-3,5 SCS in the para series are more regular: positive for donors and negative

w

° L L - L 1 1 1 J
-5 0 649 S 0 1 Sim 2
Fic. 1 FiG. 2
Linear dependence of SCS of C-4 in para- Plot of SCS in meta-substituted anilines in
-substituted anilines (x-axis) vs the same the two similar positions 3 and 5 (x-axis
shifts in meta-substituted anilines (y-axis) and y-axis, respectively). The straight line

has unity slope
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for acceptors. The bad fit with DSP is not improved by the DSP-NLR procedure,
in contradiction to the previous claim’, which was based on a shorter series. Lastly
we examined the extended DSP treatment®, Eq. (4) with X = M. Although the
parameters M were determined only from SCS of C-3 (in substituted styrenes’),
the treatment is not satisfactory and clearly overparametrized (Table IV): either oy
or M can be omitted. In conclusion, SCS of C-3 do not seem to have any simple
physical interpretation. The main problem may be that they are relatively small
with respect to SCS in other positions (but they are still sufficiently large compared
to the experimental error). A possible explanation could be also connected with the
variable conformational equilibrium in the case of axially unsymmetrical substituents
in meta derivatives. A principal difference in the behaviour of C-3 and C-4 shifts
does not agree with the recent theory of Godfrey®® who treats meta and para deriva-
tives together by plotting SCS vs the new constants ogr. In our case the shifts é, ,
and d; , should be combined, and also é, ,, and J; ,. This theory evidently does not
apply to ring carbon SCS and it does not apply to extraannular carbon atoms®®
either.

SCS in position 2 are larger and somewhat more regular: they may be qualitatively
understood in terms of magnetic anisotropy effects'. It is thus not surprising that
correlations with DSP are very bad but there are important relations between SCS
in the individual series. SCS of C-6 in the meta series correlate with C-2,6 in the para
series (Fig. 3), SCS of C-2 in the meta series deviate more (not shown). This is under-
standable since the substituent effect in the latter position is affected also by the
adjacent NH, group. The effect is evidently neither electrostatic nor steric in character
as follows from qualitative observations (almost equal effects of F, OR and NR,,
extreme positive shift by I, opposite effects of CF; and CN). As expected there is
no relation to the steric parameters, either alone or combined with DSP. The only
correlation which appears satisfactory according to the correlation coefficient is the
extended DSP treatment with parameters O (Table IV). This is understandable since
the parameters O were derived from SCS in the position 2 of substituted styrenes®.
However, the correlations are overparametrized and constants o, appear superfluous.
Some insight into the nature of SCS can be gained from a plot of SCS of C-2 against
C-1 (Fig. 4). There is an evident general trend with a negative slope and also re-
stricted relationships in particular subsets (always with a negative slope). In this
way an alternating substituent effect>® comes into play as it was often required by
theory, particularly from quantum chemical calculations®-38, However, this altera-
tion does not proceed further in the benzene backbone: SCS in the position 3 and 4
are controlled by other factors and not related to those in positions 1 and 2.

As expected the C-1 SCS are largest of all and not dependent on DSP: their most
striking feature is the controlling effect of the first atom of the substituent. Ac-
cordingly, they could be expected to correlate at least roughly with electronegativities.
From several scales those denoted o, have been obtained by quantum chemical cal-
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culations and are available for the largest set of substituents. A plot against the
original values®® (Fig. 5) reveals a rough proportionality for a subset of simple
substituents H, SCH;, CH;, NR,, OR, and F, substituents with multiple bonds
deviate systematically. The improved values of g,, published later®8, seem to be less
appropriate. (The negative values for COCH; and SCH, are particularly suspicious.)
Best correlations of C-1 SCS are obtained with EDSP including the parameters® I.
Since the later were derived also from C-1 shifts, the correlation does not prove
anything more than that these shifts are similar in different series. We can resume
that they are controlled directly by the adjacent substituent and are relatively inde-
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Plot of SCS of C-2,6 in para-substituted
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anilines (yv-axis). The straight line has unity
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Plot of C-1 SCS in para-substituted anilines
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pendent of the remote parts of the molecule. Nevertheless, the significance of all
terms of Eq. (4) is questionable even in this case. Similarity of SCS in individual
series can be demonstrated more efficiently by a direct correlation of the meta and
para series (Table IV) which is still somewhat better than more sophisticated multiple-
-term correlations.

We are forced to the strange conclusion that SCS in the four different positions
of the benzene ring are controlled by four different mechanisms. We can at best
concede that the shifts in the positions 1 and 2 have one common controlling factor,
but the others are completely different in character: those in the position 4 depend
on classical electronic effects while for position 3 there is no obvious rationalization.
Except for position 3 there is a close resemblance between individual series of com-
pounds. Our statement is somewhat at variance with the PCA carried out on a larger
but less systematical data set which concluded that three factors explain 85% of the
total variance?®. We hope that subsequent PCA of a larger SCS data set will resolve
the problem.
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